ANOVA \& TI
 One-Way Analysis of Variance: Comparing Several Means

Important Tips \& Notes:

1. Use this method when comparing at least three population means in an attempt to determine if they are equal or at least one is different from the rest.
2. Preparation:
(a) Use $L_{1}, L_{2}, L_{3}, \ldots, L_{k}$ for the data that belong to each of the k samples.
(b) Find the total sample size n where $n=n_{1}+n_{2}+n_{3}+\cdots+n_{k}$.
3. Numerator degrees of freedom: $k-1$
4. Denominator degrees of freedom: $n-k$
5. Use F distribution plot which is right-skewed and takes only non-negative values.
6. Always use Right-Tail Test.

Hypothesis Testing For $\mu_{1}, \mu_{2}, \mu_{3}, \ldots \mu_{k}$:

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\cdots=\mu_{k} \\
& H_{1}: \text { not all of } \mu_{1}, \mu_{2}, \mu_{3}, \ldots, \text { and } \mu_{k} \text { are equal. }
\end{aligned}
$$

1. Finding Critical Values Using TI:
```
PRGM > FVAL > ENTER (Twice)
```

- Numerator Degrees of Freedom $\Longrightarrow k-1$
- Denominator Degrees of Freedom $\Longrightarrow n-k$

2. Finding C.T.S. \& P-Value Using TI:

$$
\text { STAT }>\operatorname{TESTS}>\operatorname{ANOVA}\left(L_{1}, L_{2}, L_{3}, \ldots, L_{k}\right)>\operatorname{ENTER}
$$

Guided Example:

A calculus test was given to randomly selected students from four randomly selected calculus classes. The results are given in the following table.

| Class A: | 82 | 83 | 92 | 97 | 82 | 75 | 68 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Class B: | 75 | 81 | 85 | 92 | 88 | 70 | 70 | 90 | 92 | 84 | 100 | |
| Class C: | 82 | 83 | 99 | 93 | 76 | | | | | | | |
| Class D: | 71 | 88 | 79 | 95 | 89 | 73 | 60 | 94 | 72 | 83 | 75 | 68 |

Table 1:

Calculus Classes

1. What is the value of k, the number of samples? Answer: $k=4$
2. What is the value of n, the total sample size? Answer: $n=7+11+5+12=35$
3. What is the numerator degrees of freedom $k-1$? Answer: $N d f=4-1=3$
4. What is the denominator degrees of freedom $n-k$? Answer: $D d f=35-4=31$
5. Use \mathbf{F} distribution plot and program FVAL to find the critical value for right tail test with $\alpha=$.01. Answer: C.V. $F=4.484$
6. Use ANOVA to find the computed test statistic and the $\mathbf{p}-$ value. Answer: C.T.S. $F=0.895$ and P -Value $P=0.455$
7. Determine whether the mean results for all students from all four classes are the same or at least one is different.
Answer:
$H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$
H_{1} : At least one population mean is different.
8. Conclusion: C.T.S. is in NCR. P-Value $>\alpha . H_{0}$ is valid. All four population means are equal.
