ANOVA & TI

One-Way Analysis of Variance: Comparing Several Means

Important Tips & Notes:

- 1. Use this method when comparing at least three population means in an attempt to determine if they are equal or at least one is different from the rest.
- 2. Preparation:
 - (a) Use $L_1, L_2, L_3, \ldots, L_k$ for the data that belong to each of the k samples.
 - (b) Find the total sample size n where $n = n_1 + n_2 + n_3 + \cdots + n_k$.
- 3. Numerator degrees of freedom: k-1
- 4. Denominator degrees of freedom: n-k
- 5. Use F distribution plot which is right-skewed and takes only non-negative values.
- 6. Always use Right-Tail Test.

Hypothesis Testing For $\mu_1, \mu_2, \mu_3, \ldots \mu_k$:

 $H_0: \mu_1 = \mu_2 = \mu_3 = \dots = \mu_k$ $H_1:$ not all of $\mu_1, \mu_2, \mu_3, \dots$, and μ_k are equal.

1. Finding Critical Values Using TI:

- PRGM > FVAL > ENTER (Twice)
- Numerator Degrees of Freedom $\implies k-1$
- Denominator Degrees of Freedom $\implies n-k$

2. Finding C.T.S. & P-Value Using TI:

STAT > TESTS > ANOVA($L_1, L_2, L_3, \ldots, L_k$) > ENTER

Guided Example:

A calculus test was given to randomly selected students from four randomly selected calculus classes. The results are given in the following table.

Class A:	82	83	92	97	82	75	68					
Class B:	75	81	85	92	88	70	70	90	92	84	100	
Class C:	82	83	99	93	76							
Class D:	71	88	79	95	89	73	60	94	72	83	75	68

- 1. What is the value of k, the number of samples? Answer: k = 4
- 2. What is the value of n, the total sample size? Answer: n = 7 + 11 + 5 + 12 = 35
- 3. What is the numerator degrees of freedom k-1? Answer: Ndf = 4 1 = 3
- 4. What is the denominator degrees of freedom n k? Answer: Ddf = 35 4 = 31
- 5. Use **F** distribution plot and program **FVAL** to find the critical value for **right tail test** with $\alpha = .01$. Answer: C.V. F = 4.484
- 6. Use ANOVA to find the computed test statistic and the p-value. Answer: C.T.S. F = 0.895and P-Value P = 0.455
- 7. Determine whether the mean results for all students from all four classes are the same or at least one is different. Answer:

 $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$ $H_1:$ At least one population mean is different.

8. Conclusion: C.T.S. is in NCR. P–Value> α . H_0 is valid. All four population means are equal.